Chaperonin-mediated protein folding.
نویسندگان
چکیده
Molecular chaperones are required to assist folding of a subset of proteins in Escherichia coli. We describe a conceptual framework for understanding how the GroEL-GroES system assists misfolded proteins to reach their native states. The architecture of GroEL consists of double toroids stacked back-to-back. However, most of the fundamentals of the GroEL action can be described in terms of the single ring. A key idea in our framework is that, with coordinated ATP hydrolysis and GroES binding, GroEL participates actively by repeatedly unfolding the substrate protein (SP), provided that it is trapped in one of the misfolded states. We conjecture that the unfolding of SP becomes possible because a stretching force is transmitted to the SP when the GroEL particle undergoes allosteric transitions. Force-induced unfolding of the SP puts it on a higher free-energy point in the multidimensional energy landscape from which the SP can either reach the native conformation with some probability or be trapped in one of the competing basins of attraction (i.e., the SP undergoes kinetic partitioning). The model shows, in a natural way, that the time scales in the dynamics of the allosteric transitions are intimately coupled to folding rates of the SP. Several scenarios for chaperonin-assisted folding emerge depending on the interplay of the time scales governing the cycle. Further refinement of this framework may be necessary because single molecule experiments indicate that there is a great dispersion in the time scales governing the dynamics of the chaperonin cycle.
منابع مشابه
Dynamic Complexes in the Chaperonin-Mediated Protein Folding Cycle
The GroEL-GroES chaperonin system is probably one of the most studied chaperone systems at the level of the molecular mechanism. Since the first reports of a bacterial gene involved in phage morphogenesis in 1972, these proteins have stimulated intensive research for over 40 years. During this time, detailed structural and functional studies have yielded constantly evolving concepts of the chap...
متن کاملRattling the cage: computational models of chaperonin-mediated protein folding.
Chaperonins are known to maintain the stability of the proteome by facilitating the productive folding of numerous misfolded or aggregation-prone proteins and are thus essential for cell viability. Despite their established importance, the mechanism by which chaperonins facilitate protein folding remains unknown. Computer simulation techniques are now being employed to complement experimental o...
متن کاملChaperonin-Catalyzed Rescue of Kinetically Trapped States in Protein Folding
GroEL and GroES form a chaperonin nano-cage for single protein molecules to fold in isolation. The folding properties that render a protein chaperonin dependent are not yet understood. Here, we address this question using a double mutant of the maltose-binding protein DM-MBP as a substrate. Upon spontaneous refolding, DM-MBP populates a kinetically trapped intermediate that is collapsed but str...
متن کاملRole of the chaperonin cofactor Hsp10 in protein folding and sorting in yeast mitochondria
Protein folding in mitochondria is mediated by the chaperonin Hsp60, the homologue of E. coli GroEL. Mitochondria also contain a homologue of the cochaperonin GroES, called Hsp10, which is a functional regulator of the chaperonin. To define the in vivo role of the co-chaperonin, we have used the genetic and biochemical potential of the yeast S. cerevisiae. The HSP10 gene was cloned and sequence...
متن کاملA simple model of chaperonin-mediated protein folding.
Chaperonins are oligomeric proteins that help other proteins fold. They act, according to the "Anfinsen cage" or "box of infinite dilution" model, to provide private space, protected from aggregation, where a protein can fold. Recent evidence indicates, however, that proteins are often ejected from the GroEL chaperonin in nonnative conformations, and repeated cycles of binding and ejection are ...
متن کاملTransient conformational remodeling of folding proteins by GroES—individually and in concert with GroEL
The commonly accepted dogma of the bacterial GroE chaperonin system entails protein folding mediated by cycles of several ATP-dependent sequential steps where GroEL interacts with the folding client protein. In contrast, we herein report GroES-mediated dynamic remodeling (expansion and compression) of two different protein substrates during folding: the endogenous substrate MreB and carbonic an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Annual review of biophysics and biomolecular structure
دوره 30 شماره
صفحات -
تاریخ انتشار 2001